
在使用中,将Davies-Bouldin指数应用于聚类分析的结果,如下所示:
from sklearn import datasets
iris = datasets.load_iris()
X = iris.data
from sklearn.cluster import KMeans
from sklearn.metrics import davies_bouldin_score
kmeans = KMeans(n_clusters=3, random_state=1).fit(X)
labels = kmeans.labels_
davies_bouldin_score(X, labels)
该指数的优点:
- Davies-Bouldin的计算比Silhouette分数更简单。
- 索引仅计算数据集固有的数量和特征。
2.3.10. Clustering performance evaluation
DAVIES D L, BOULDIN D W. A Cluster Separation Measure [J]. IEEE Trans Pattern Anal Mach Intell, 1979, PAMI-1(2): 224-7.