免责声明:网站内容仅供个人学习记录,禁做商业用途,转载请注明出处。

版权所有 © 2017-2020 NEUSNCP个人学习笔记 辽ICP备17017855号-2

XGBoost - A Scalable Tree Boosting System.pdf


neunms

ABSTRACT
Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable endto-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems.
浏览 1.1K   最近更新: 2020年4月19日 14:28:37